Abstract

Extracting travel patterns from large-scaled vehicle trajectories is the key step to analyze urban travel characteristics, which can also provide effective strategies for urban traffic planning, construction, management and policy decision. In this study, we adopt the DBSCAN (Density-Based Spatial Clustering of Application with Noise) algorithm by fusing spatial, temporal and directional attributes extracting from vehicle trajectories Furthermore, LCS (Longest Common Sequences) is adopted to estimate spatial similarity, and two measurements are also designed to evaluate the temporal and directional similarity between trajectories. Accordingly, a statistical feature-based parameter optimization method is proposed in the clustering process to achieve reasonable clustering results. Finally, trajectory data collected from Harbin city, China are used to validate the effectiveness of clustering method. A comparison of clustering results considering different combination of attributes is conducted to further demonstrate the advantage of the proposed model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.