Abstract

In this article, we introduce an innovative parametric representation of the Hubble parameter, providing a model-independent means to explore the dynamics of an accelerating cosmos. The model's parameters are rigorously constrained through a Markov Chain Monte Carlo (MCMC) approach, leveraging a comprehensive dataset consisting of 31 data points from cosmic chronometers (CC), 1701 updated observations of Pantheon supernovae type Ia (SNeIa), and 6 data points from baryonic acoustic oscillations (BAO). Our analysis delves into the behavior of various cosmological parameters within the model, including the transition from a decelerating phase to an accelerating one, as well as the density parameters and the equation of state (EoS) parameter. The outcomes of our investigation reveal that the equation of state parameter aligns with characteristics reminiscent of the phantom model, supporting the prevailing understanding of our universe's current state of acceleration. This research contributes valuable insights into the ongoing cosmic expansion and underscores the utility of our novel parametric approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.