Abstract

Ulex europaeus is one of the most abundant and aggressively invasive plants on the world. Its fibres, which can be isolated using an alkaline pulping process, have been successfully thermo-pressed into high-density fibreboards without any type of binder. The influence of the bioorganic and crystalline components on the product was investigated using crystallographic, thermo-analytical, and mechanical techniques. Cellulose was predominantly an Iβ polymorph, more common in hardwood, but the composition of the material was typical of softwood. Both the crystallinity in the fibres and the average domain size of cellulose increased during thermo-pressing. Notwithstanding that the residual lignin was present in a small amount, this promoted the cohesion of fibres by improving hydrolysis and adhesion properties. The best overall properties were observed in the pressed products of 1030 ± 38 kg/m3, showing an elastic modulus of 4.31 ± 0.26 GPa, with a modulus of rupture of 26.5 ± 1.3 MPa. These results serve as the basis to transform the invasive species into a fully non-toxic added-value resource.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.