Abstract
This study aims to explore the trip fuel consumption from a large-scale dataset. To better understand how the multiple variables (e.g., average travel speed, trip distance) influence the trip fuel consumption, we propose the support vector machine (SVM) to learn the relationship between the trip fuel consumption and the corresponding factors. A large-scale global positioning system (GPS) and Controller Area Network (CAN) bus data provided by 153 probe vehicles during one month are used. Elasticity analysis indicates that trip distance and coefficient of variance of link speed have relatively great importance on the SVM model. To demonstrate the performance of the proposed method, three other regression methods, i.e., the multiple linear regression model, artificial neural network (ANN), and the link fuel summation SVM model (LSSVM) are also adopted for performance comparisons. The results show that SVM model is much closer to the target than the other three models.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of the Eastern Asia Society for Transportation Studies
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.