Abstract
Algorithms for solving the Bounded Distance Decoding problem (BDD) are used for estimating the security of lattice-based cryptographic primitives, since these algorithms can be employed to solve variants of the Learning with Errors problem (LWE). In certain parameter regimes where the target vector is small and/or sparse, batches of BDD instances emerge from a combinatorial approach where several components of the target vector are guessed before decoding. In this work we explore trade-offs in solving “Batch-BDD”, and apply our techniques to the small-secret Learning with Errors problem. We compare our techniques to previous works which solve batches of BDD instances, such as the hybrid lattice-reduction and meet-in-the-middle attack. Our results are a mixed bag. We show that, in the “enumeration setting” and with BKZ reduction, our techniques outperform a variant of the hybrid attack which does not consider time-memory trade-offs in the guessing phase for certain Round5 (17-bits out of 466), Round5-IoT (19-bits out of 240), and NTRU LPrime (23-bits out of 385) parameter sets. On the other hand, our techniques do not outperform the Hybrid Attack under standard, albeit unrealistic, assumptions. Finally, as expected, our techniques do not improve on previous works in the “sieving setting” (under standard assumptions) where combinatorial attacks in general do not perform well.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.