Abstract
Machine based human action recognition has become very popular in the last decade. Automatic unattended surveillance systems, interactive video games, machine learning and robotics are only few of the areas that involve human action recognition. This paper examines the capability of a known transform, the so-called Trace, for human action recognition and proposes two new feature extraction methods based on the specific transform. The first method extracts Trace transforms from binarized silhouettes, representing different stages of a single action period. A final history template composed from the above transforms, represents the whole sequence containing much of the valuable spatio-temporal information contained in a human action. The second, involves Trace for the construction of a set of invariant features that represent the action sequence and can cope with variations usually appeared in video capturing. The specific method takes advantage of the natural specifications of the Trace transform, to produce noise robust features that are invariant to translation, rotation, scaling and are effective, simple and fast to create. Classification experiments performed on two well known and challenging action datasets (KTH and Weizmann) using Radial Basis Function (RBF) Kernel SVM provided very competitive results indicating the potentials of the proposed techniques.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.