Abstract

Nuclear magnetic resonance (NMR) is a powerful tool for studying quantum information processing (QIP). Recently quantum technologies have been proposed to overcome the challenges in large-scale NMR QIP. Furthermore, computational chemistry can promote its improvement. Nuclear spins-1/2 are natural qubits and have been used in most NMR quantum computation experiments. However, molecules that enable many qubits NMR QIP implementations should meet some requirements regarding their spectroscopic properties. Exceptionally large through-space (TS) P-P spin-spin coupling constants (SSCC or J) observed in 1,8-diphosphanaphthalenes (PPN) and in naphtho[1,8- cd]-1,2-dithiole phenylphosphines (NTP) were proposed and investigated to provide more accurate control within large-scale NMR QIP. Spectroscopic properties of PPN and NTP derivatives were explored by theoretical strategies using locally dense basis sets (LDBS). 31P chemical shifts (δ) calculated at the B3LYP/aug-cc-pVTZ-J level and TS P-P SSCCs at the PBE1PBE/pcJ-2 (LDBS-1) level are very close to the experimental data for the PPN molecule. Differently, for the NTP dimer, PBE1PBE/pcJ-2 (LDBS-2) predicts more accurate 31P δ, whereas PBE1PBE/Def2-TZVP (LDBS-1) forecasts more accurate TS P-P SSCCs. From our results, PPNo-F, PPNo-ethyl, and PPNo-NH2 were the best candidates for NMR QIP, in which the large TS SSCCS could face the need of long-time quantum gates implementations. Therefore, it could overcome natural limitations concerning the development of large-scale NMR.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.