Abstract

In this study, the effect of defects on fracture toughness in different directions was investigated. Two diamond films with a diameter of 122 mm and as-deposited thicknesses of 2.2 and 1.5 mm, respectively, were deposited by DC arc plasma jet chemical vapor deposition. To accurately obtain the fracture toughness, the films were ground and polished to 1.6 and 0.8 mm, respectively. The results indicate that many defects, including pores, are introduced into the films during the growth process, particularly on the side close to the growth surface in thicker film. The size of pores reaches micrometres, which affects the fracture toughness under loading in different directions. Due to the minimum grain size, both films exhibit a maximum toughness of 8.2 and 10.0 MPa·m1/2, respectively, with growth-surface cracks. For the thinner sample, the maximum value is followed by that of the edge-surface cracks. As the grain size of the edge surface falls between that of the growth surface and that of the nucleation surface, the results indicate that fracture toughness is affected by grain size. However, the number of pores near the growth side increases when the thickness exceeds 0.8 mm. Pores reduce the toughness, resulting in the minimum fracture toughness (6 MPa·m1/2) of the thicker diamond film with edge-surface laser cracks. The sample with an edge-surface sharp pre-crack has a similar fracture toughness of 5.6 MPa·m1/2. This study provides guidance for selecting the applied load direction.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call