Abstract

Vanadium dioxide (VO2) has attracted great attention, with scientific and technological advances over the past few decades due to its reversible metal-insulator transition at 340 K. However, the high phase transition temperature (Tc) of VO2 limits its practical applications. Our first-principles calculations show that VO2(1 1 0) surfaces with adsorbed noble metals (Ag, Au, Pt) exhibit a lower work function compared with the clean surface and further induces a lower Tc due to charge transfer from the noble metals to the VO2(1 1 0) surface. However, the work functions of the VO2(1 1 0) surfaces after the incorporation of noble metals are higher than that of the clean surface. In addition, the results of formation energies of various configurations show that the VO2(1 1 0) surface with the adsorption and incorporation of Ag is energetically more favorable than those with Au and Pt. Therefore, it may be concluded that the adsorption and incorporation of noble metals can not only tailor the work function of VO2, in turn realizing the rational tuning of Tc of VO2, but also stabilize the structures of VO2 thin films. These results provide guidance for further exploration of VO2-based optical switching devices and smart windows.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call