Abstract

Wave storms present a significant hazard to the coastal environment, particularly affecting the 10% of the population residing in low-lying coastal areas, as well as coastal zone infrastructure and developments. This study utilizes a ~40-year wave hindcast to conduct an analysis of wind-wave storminess along the worldwide coast (Lobeto et al., 2024). The main characteristics of wave storms, such as the associated wave height and direction, as well as the occurrence rate, duration and intensity, are analyzed. Additional climatic wave features including the relative importance of wind seas versus swells during wave storms are also explored. The combination of key storm features has led to a categorization of coastal regions based on their degree of wave storminess. Results indicate Northwestern Europe and Southwestern South America to be the coastal regions experiencing the most severe storms, while the Yellow Sea, along with the South African and Namibian coastlines, are noted for their high frequency of storms. A global holistic analysis of the wave storminess reveals that, for example, the exposed shores of northwestern Europe experience over 10 storms annually, with mean significant wave heights exceeding 6 meters. A general latitudinal pattern in degree of wave storminess is observed, with the main exception of those coasts affected by wave storms generated by tropical cyclones. Accordingly, regions such as Iceland, Ireland, Scotland, Chile, and Australia exhibit the highest storminess levels, contrasting with lower levels observed in Indonesia, Papua-New Guinea, Malaysia, Cambodia, and Myanmar.   Lobeto, H, Semedo, A., Lemos, G., Dastgheib, A., Menendez, M., Ranasinghe, R., Bidlot, R. (2024). Global coastal wave storminess. Scientific Reports (in press).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.