Abstract

We develop a full-dimensional analytical potential energy surface (PES) for the F- + SiH3Cl reaction using Robosurfer for automatically sampling the configuration space, the robust [CCSD-F12b + BCCD(T) - BCCD]/aug-cc-pVTZ composite level of theory for computing the energy points, and the permutationally invariant polynomial method for fitting. Evolution of the fitting error and the percentage of the unphysical trajectories are monitored as a function of the iteration steps/number of energy points and polynomial order. Quasi-classical trajectory simulations on the new PES reveal rich dynamics resulting in high-probability SN2 (SiH3F + Cl-) and proton-transfer (SiH2Cl- + HF) products as well as several lower-probability channels, such as SiH2F- + HCl, SiH2FCl + H-, SiH2 + FHCl-, SiHFCl- + H2, SiHF + H2 + Cl-, and SiH2 + HF + Cl-. The Walden-inversion and front-side-attack-retention SN2 pathways are found to be competitive, producing nearly racemic products at high collision energies. The detailed atomic-level mechanisms of the various reaction pathways and channels as well as the accuracy of the analytical PES are analyzed along representative trajectories.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call