Abstract

The aim of this study is to explore the utility of cardiac magnetic resonance (CMR) imaging of radiomic features to distinguish active and inactive cardiac sarcoidosis (CS). Subjects were classified into active cardiac sarcoidosis (CSactive) and inactive cardiac sarcoidosis (CSinactive) based on PET-CMR imaging. CSactive was classified as featuring patchy [18F]fluorodeoxyglucose ([18F]FDG) uptake on PET and presence of late gadolinium enhancement (LGE) on CMR, while CSinactive was classified as featuring no [18F]FDG uptake in the presence of LGE on CMR. Among those screened, thirty CSactive and thirty-one CSinactive patients met these criteria. A total of 94 radiomic features were subsequently extracted using PyRadiomics. The values of individual features were compared between CSactive and CSinactive using the Mann-Whitney U test. Subsequently, machine learning (ML) approaches were tested. ML was applied to two sub-sets of radiomic features (signatures A and B) that were selected by logistic regression and PCA, respectively. Univariate analysis of individual features showed no significant differences. Of all features, gray level co-occurrence matrix (GLCM) joint entropy had a good area under the curve (AUC) and accuracy with the smallest confidence interval, suggesting it may be a good target for further investigation. Some ML classifiers achieved reasonable discrimination between CSactive and CSinactive patients. With signature A, support vector machine and k-neighbors showed good performance with AUC (0.77 and 0.73) and accuracy (0.67 and 0.72), respectively. With signature B, decision tree demonstrated AUC and accuracy around 0.7; Conclusion: CMR radiomic analysis in CS provides promising results to distinguish patients with active and inactive disease.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.