Abstract

Oak forests are facing multiple threats due to global change, with the introduction and expansion of invasive pathogens as one of the most detrimental. Here, we evaluated the use of soil biological fertiliser Biohumin® to improve the response of Quercus ilex L. to the soil-borne pathogen Phytophthora cinnamomi Rands by using one-year-old seedlings fertilised at 0, 12.5, and 25% concentrations of Biohumin® (v/v). Our hypothesis was that plant vigour and response to the pathogen would improve with Biohumin®. The effects of soil infestation and fertilisation were tested by assessing plant survival, growth, and physiology. The soil infested with P. cinnamomi negatively affected all the studied traits. We observed that a moderate concentration of Biohumin® (12.5%) increased plant survival. However, a high concentration (25%) reduced the survival compared with the control, probably as a result of the stress caused by both biotic (infection) and abiotic (soil toxicity) factors. Biohumin® at the highest concentration reduced the plant height-to-stem diameter ratio (H/D) and negatively affected plant biomass and physiological activity. Combined biofertilisation and infection induced synergistic negative effects in the leaf water potential compared with infection and fertilisation applied alone. A higher concentration of Biohumin® may favour pathogens more than plants. Further studies should explore the causes of the negative effect of the high concentration of Biohumin® observed here and evaluate if lower concentrations may benefit plant survival and physiology against soil pathogens.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call