Abstract

Germany aims to reduce soil sealing to under 30 hectares per day by 2030 to address negative environmental impacts from the expansion of impervious surfaces. As cities adapt to climate change, spatially explicit very high-resolution information about the distribution of impervious surfaces is becoming increasingly important for urban planning and decision-making. This study proposes a method for mapping impervious surfaces in Google Earth Engine (GEE) using a data fusion approach of 0.9 m colour-infrared true orthophotos, digital elevation models, and vector data. We conducted a pixel-based random forest (RF) classification utilizing spectral indices, Grey-Level Co-occurrence Matrix texture features, and topographic features. Impervious surfaces were mapped with 0.9 m precision resulting in an Overall Accuracy of 92.31% and Kappa-Coefficient of 84.62%. To address challenges posed by high-resolution imagery, we superimposed the RF classification results with land use data from Germany’s Authoritative Real Estate Cadastre Information System (ALKIS). The results show that 25.26% of the city of Wuppertal is covered by impervious surfaces coinciding with a government-funded study from 2020 based on Sentinel-2 Copernicus data that defined a proportion of 25.22% as built-up area. This demonstrates the effectiveness of our method for semi-automated mapping of impervious surfaces in GEE to support urban planning on a local to regional scale.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call