Abstract

The negative impacts of fine particulate matter (PM2.5) exposure on human health are a primary motivator for air quality research. However, estimates of the air pollution health burden vary considerably and strongly depend on the datasets and methodology. Satellite observations of aerosol optical depth (AOD) have been widely used to overcome limited coverage from surface monitoring and to assess the global population exposure to PM2.5 and the associated premature mortality. Here we quantify the uncertainty in determining the burden of disease using this approach, discuss different methods and datasets, and explain sources of discrepancies among values in the literature. For this purpose we primarily use the MODIS satellite observations in concert with the GEOS-Chem chemical transport model. We contrast results in the United States and China for the years 2004-2011. Using the Burnett et al. (2014) integrated exposure response function, we estimate that in the United States, exposure to PM2.5 accounts for approximately 2% of total deaths compared to 14% in China (using satellite-based exposure), which falls within the range of previous estimates. The difference in estimated mortality burden based solely on a global model vs. that derived from satellite is approximately 14% for the U.S. and 2% for China on a nationwide basis, although regionally the differences can be much greater. This difference is overshadowed by the uncertainty in the methodology for deriving PM2.5 burden from satellite observations, which we quantify to be on the order of 20% due to uncertainties in the AOD-to-surface-PM2.5 relationship, 10% due to the satellite observational uncertainty, and 30% or greater uncertainty associated with the application of concentration response functions to estimated exposure.

Highlights

  • By 2030, air pollution will be the leading environmentally related cause of premature mortality worldwide (OECD, 2012)

  • Many epidemiological studies have shown that chronic exposure to fine particulate matter (PM2.5) is associated with an increase in the risk of mortality from respiratory diseases, lung cancer, and cardiovascular disease, with the underlying assumption that a causal relationship exists between PM and health outcomes (Dockery et al, 1993; Jerrett et al, 2005a; Krewski et al, 2009; Pope et al, 1995, 2002, 2004, 2006)

  • The attributable fraction (AF) of mortality due to PM2.5 exposure depends on the relative risk value (RR), which here is the ratio of the probability of mortality occurring in an exposed population to the probability of mortality occurring in a non-exposed population

Read more

Summary

Introduction

By 2030, air pollution will be the leading environmentally related cause of premature mortality worldwide (OECD, 2012). Many epidemiological studies have shown that chronic exposure to fine particulate matter (PM2.5) is associated with an increase in the risk of mortality from respiratory diseases, lung cancer, and cardiovascular disease, with the underlying assumption that a causal relationship exists between PM and health outcomes (Dockery et al, 1993; Jerrett et al, 2005a; Krewski et al, 2009; Pope et al, 1995, 2002, 2004, 2006) This has been shown through single and multi-population time series analyses, long-term cohort studies, and meta-analyses. Many studies have instead relied on fixedsite monitors within a certain radius to estimate population-

Objectives
Methods
Findings
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.