Abstract

BackgroundRNA-Seq technology has received a lot of attention in recent years for microalgal global transcriptomic profiling. It is widely used in transcriptome-wide analysis of gene expression., particularly for microalgal strains with potential as biofuel sources. However, insufficient genomic or transcriptomic information of non-model microalgae has limited the understanding of their regulatory mechanisms and hampered genetic manipulation to enhance biofuel production. As such, an optimal microalgal transcriptomic database construction is a subject of urgent investigation.ResultsDunaliella tertiolecta, a non-model oleaginous microalgal species, was sequenced via Illumina MISEQ and HISEQ 4000 in RNA-Seq studies. The high quality high-throughout sequencing data were explored using high performance computing (HPC) in a petascale data center and subjected to de novo assembly and parallelized mpiBLASTX search with multiple species. As a result, a transcriptome database of 17,845 was constructed (~95% completeness). This enlarged database constructed fueled the RNA-Seq data analysis, which was validated by a nitrogen deprivation (ND) study that induces triacylglycerol (TAG) production.ConclusionsThe new paralleled assembly and annotation method under HPC presented here allows the solution of large-scale data processing problems in acceptable computation time. There is significant increase in the number of transcriptomic data achieved and observable heterogeneity in the performance to identify differentially expressed genes in the ND treatment paradigm. The results provide new insights as to how response to ND treatment in microalgae is regulated. ND analyses highlight the advantages of this database generated in this study that could also serve as a useful resource for future gene manipulation and transcriptome-wide analysis. We thus demonstrate the usefulness of exploring the transcriptome as an informative platform for functional studies and genetic manipulations in similar species.

Highlights

  • RNA-Seq technology has received a lot of attention in recent years for microalgal global transcriptomic profiling

  • Experiments using high performance computing (HPC) were completed on the petascale National Supercomputing Centre (NSCC), which comprises of 1288 nodes, 128 GB DDR4/ node

  • All the software settings used for construction and analyses of the transcriptome in this study are described in Additional file 1

Read more

Summary

Introduction

RNA-Seq technology has received a lot of attention in recent years for microalgal global transcriptomic profiling. It is widely used in transcriptome-wide analysis of gene expression., for microalgal strains with potential as biofuel sources. RNA-Seq is a recently developed approach for transcriptomic profiling, which uses deep-sequencing technologies to elucidate the complexity of eukaryotic transcriptomes [1]. It has been applied in quantifying transcriptional expression in microalgae mutants and microalgae cultured. Trinity assembler was reported to have the highest number of assembled transcripts matching the non-redundant (Nr) database [2, 15, 21]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call