Abstract

In the absence of a tri-dimensional structure, revealing the topology of a membrane protein provides relevant information to identify the number and orientation of transmembrane helices and the localization of critical amino acid residues, contributing to a better understanding of function and intermolecular associations. Topology can be predicted in silico by bioinformatic analysis or solved by biochemical methods. In this chapter, we describe a pipeline employing bioinformatic approaches for the prediction of membrane protein topology, followed by experimental validation through the substituted-cysteine accessibility method and the analysis of the protein's oligomerization state.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call