Abstract

Polyamines such as spermine can have interaction with protein. The aim of the present study was to investigate how spermine could influence the structure, thermal stability, and the activity of α-chymotrypsin. Kinetics, thermodynamics, molecular dynamics (MD), and docking simulations studies were conducted to investigate the effect of spermine on the activity and structure of α-Chymotrypsin (α-Chy) in 50 mM Tris–HCl buffer, with the pH 8, using different spectroscopic techniques as well as molecular docking and MD simulations. The stability and activity of α-Chy were increased in the presence of spermine. The results of the kinetic study showed that the activity of spermine was increased. Enzyme activation was accompanied by changes on the α-Chy conformation. Fluorescence intensity changes showed dynamic quenching during spermine binding. The fluorescence quenching of the α-Chy suggested the more polar location of Trp residues. Near-UV and Far-UV circular dichroism studies also demonstrated the transfer of Trp, Phe, and Tyr residues to a more flexible environment. The increase in the absorption of α-Chy in the presence of spermine was as a result of the formation of spermine–α-Chy complex. Molecular docking results revealed the presence of one binding site with a negative value for the Gibbs free energy of the binding of spermine to α-Chy. Docking study also revealed that van der Waals interactions and hydrogen bonds played a major role in stabilizing the complex.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call