Abstract
Background Ulcerative colitis is a chronic mucosal inflammation of the large intestine mainly affecting the colon and rectum. The lack of effective and safe therapeutic agents led to the identification of new therapeutic agents to effectively manage the symptoms and complications of ulcerative colitis. The present study aimed to evaluate the protective effect of sodium benzoate in acetic acid-induced ulcerative colitis in rats. Methods Infusion of 3% acetic acid in the colon through the rectum was done to construct a rat model of ulcerative colitis. After 5 days of infusion, macroscopic, biochemical, and histopathological examinations and disease activity scoring of the colon were done to assess colonic damage. Results Acetic acid infusion resulted in severe inflammation in the colon assessed macroscopically and histopathologically. Moreover, it also led to increase in myeloperoxidase (MPO) and reduction in glutathione (GSH) levels. In the present study, repeated administration of sodium benzoate (400 and 800 mg/kg i.p.) and sulfasalazine (500 mg/kg orally) for 7 days, i.e. 2 days before and continued for 5 days after acetic acid infusion, significantly attenuated macroscopic damage and disease activity score as compared to disease control. Further, it also significantly reduced the levels of MPO and enhanced colonic levels of reduced GSH. However, the lower dose of sodium benzoate (200 mg/kg) did not show sufficient protective effect in acetic acid-induced ulcerative colitis. Further, sodium benzoate per se did not show any effect in normal rats. Conclusions The observed protective effect of sodium benzoate may be due to its antioxidant and anti-inflammatory activities in an ulcerative colitis model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of basic and clinical physiology and pharmacology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.