Abstract

This study aimed to investigate the therapeutic effect of black ginseng (BG) on non-alcoholic fatty liver disease (NAFLD) using network pharmacology combined with the molecular docking strategy. The saponin composition of BG was analyzed by liquid chromatography-mass spectrometry (LC/MS) instrument. Then the network pharmacology was applied to explore the potential targets and related mechanisms of BG in the treatment of NAFLD. After screening out key targets, molecular docking was used to predict the binding modes between ginsenoside and target. Finally, a methionine and choline deficiency (MCD) diet-induced NAFLD mice model was established to further confirm the therapeutic effect of BG on NAFLD. Twenty-four ginsenosides were annotated based on the MS and tandem MS information. Ten proteins were screened out as key targets closely related to BG treatment of NAFLD. The molecular docking showed that most of the ginsenosides had good binding affinities with AKT1. The validation experiment revealed that BG administration could reduce serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels and improve the MCD diet-induced histological changes in liver tissue. Moreover, BG could upregulate the phosphorylation level of AKT in the liver of NAFLD mice, thereby exerting the therapeutic effect on NAFLD. Further studies on the active ginsenosides as well as their synergistic action on NAFLD will be required to reveal the underlying mechanisms in-depth. This study demonstrates that network pharmacological prediction in conjunction with molecular docking is a viable technique for screening the active chemicals and related targets of BG, which can be applied to other herbal medicines.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call