Abstract
A tellurorosamine dye [Te(II)] undergoes aerobic photooxidation. Although Te(IV) species have been used in a number of oxidations, key Te(IV)-oxo and Te(IV)-bis(hydroxy) intermediates are challenging to study. Under aerobic irradiation with visible light, Te(II) (λmax = 600 nm) transforms into a Te(IV) species (λmax = 669 nm). The resultant Te(IV) species is not stable in the dark or at -20 °C, decomposing back to Te(II) and other byproducts over many hours. To eliminate the structural ambiguity of the Te(IV) photoproduct, we used spectroelectrochemistry, wherein the bis(hydroxy) Te(IV)-(OH)2 was electrochemically generated under anaerobic conditions. The absorption of Te(IV)-(OH)2 matches that of the Te(IV) photoproduct. Because isosbestic points are maintained both photochemically and electrochemically, the oxo core formed photochemically must rapidly equilibrate with Te(IV)-(OH)2. Calculations on the bis(hydroxy) versus oxo species further corroborate that the equilibration is rapid and the spectra of the two species are similar. To further explore Te(IV) cores, two novel compounds, Te(IV)-Cl2 and Te(IV)-Br2, were synthesized. Characterization of Te(IV)-X2 was simplified because these cores have no analogue to the Te(IV)-(O)/Te(IV)-(OH)2 equilibrium. This work provides insights into the photophysical and electrochemical behavior of Te analogues of chalcogenoxanthylium dyes, which are relevant for a broad range of photochemical applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.