Abstract
A novel two tri-thiosemicarbazones derivatives, namely 2,2',2''-((2-Hydroxybenzene-1,3,5-triyl)tris(methanylylidene))tris(N-benzylhydrazine-1-carbothioamide) (HBC) and 2,2',2''-((2-hydroxybenzene-1,3,5-triyl) tris (methanylylidene)) tris (N-allylhydrazine-1-carbothioamide) (HAC), have been synthesized and their chemical structures were determined using different spectroscopic and analytical approaches. Then, utilizing methods including open circuit potential, potentiodynamic polarization, and electrochemical impedance spectroscopy, the inhibitory effect of the synthesized thiosemicarbazones on mild steel (MS) in an acidic environment (0.5 M H2SO4) was thoroughly investigated. Remarkably, raising the concentration of our recently synthesized tri-thiosemicarbazones HBC and HAC increased the inhibitory efficiency values. The η values of the two investigated tri-thiosemicarbazones derivatives (HAC and HBC), at each concentration are extremely high, and the maximum values of the efficiencies are 98.5% with HAC and 98.8% with HBC at the 800 ppm. The inhibitors adsorbed on the mild steel surface and generated a charge and mass movement barrier that protected the metal from hostile ions. According to polarization curves, HBC and HAC act as mixed-type inhibitors. Electrochemical impedance testing revealed a notable rise in charge transfer resistance (Rct) readings to 4930-Ω cm2, alongside a reduction in the Constant Phase Element (CPE) value to 5.81 μF, suggesting increased effectiveness in preventing corrosion. Also, density functional theory (DFT) was applied to investigate the assembled tri-thiosemicarbazones HBC and HAC. Moreover, the adsorption mechanism of HBC and HAC on the mild steel surface was explored using Monte Carlo simulation. Finally, the theoretical outputs were discovered to support the practical outcomes.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.