Abstract
Abstract This paper first analyzes the pain points and needs of voluntary college student volunteering in conjunction with college volunteering program management. Combined with the logic of generating a sense of acquisition for college students’ volunteer service, it explores the types of motivation that drive their volunteer demand. Based on deep learning, we propose volunteer integrity neural network prediction, classify volunteer integrity, and select different data sources to compare the running time and effectiveness of four classification algorithms, namely artificial neural network, Bayesian network, decision tree and support vector machine. Volunteer portraits are established with two dimensions: natural attributes and interest attributes. Deep feature extraction is utilized to recommend college volunteer activities. Among the sources of volunteering accessibility, 72.2% of college students consider volunteering information sources to be highly important. It can be seen that college volunteer service can help strengthen the construction of volunteer service information channels.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.