Abstract

With a significant number of features (namely being multipurpose, inexpensive and durable), thermoplastic polymers, most often named plastics, are part of our daily routine, with an increasing production over the last decade. Among them, polyethylene terephthalate (PET), high-density polyethylene (HDPE) and polypropylene (PP) are distinguished as the five most commonly used plastics in various fields, mainly in the packaging industry. Even if it is difficult to imagine the world without plastics, the boosted plastic assembly comes with huge plastic waste, creating a number of challenges, as the most important threat for our environment, but also opportunities for recycling. Currently, a special attention is dedicated on how to improve the current recycling methods or to find new ones, since the quality of recycled plastics and potential chemical or biological contaminations are two problematic aspects. Understanding the properties of each thermoplastic polymer and the interaction with possible contaminants may be the key for an efficient recycling process. The aim of this paper was to evaluate the surface behaviour of different composite supports based on recycled PET before and after interaction with collagen (used as a biological contaminant). The surface contamination bias of PET supports was studied through different techniques: scanning electron microscopy (SEM), water uptake through swelling studies, contact angle measurements and attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.