Abstract

Aqueous solutions of potassium cyanide and ammonium hydroxide are known to yield a heterogeneous cyanide polymer, containing paramagnetic sites and biologically significant substructures including polypeptides. Here, such solutions were used to prepare various samples of polymer for study by X-band and W-band electron spin resonance (ESR), scanning electron microscopy (SEM), and scanning force microscopy (SFM). Elemental composition of a typical sample of the polymer was C-35.2%, N-38.47%, 0-14.51%, and H-4.13%, exposing the polymer to 6M HCl hydrolyzed portions of the polymer and released glycine and traces of other amino acids. The X-band ESR spectra consist of a single slightly asymmetric line centered at g = 2.003; spin concentration measurements made at X-band using a nitroxide radical standard yield approximate radical concentrations of 10(18) spins/gm. W-band ESR indicates the presence of a single rhombic paramagnetic site with g(x) = 2.0025, g(y) = 2.0030, and g(z) = 2.0048 and the possibility of small 14N hyperfine splittings. The ESR spin echo studies yield a longitudinal relaxation time, Tl of 75 microS and a short-phase memory relaxation time, Tm, of about 300 nS. Scanning electron microscopy studies of the polymer show that it is made of ellipsoidal particles about one micron in size. The particles tend to clump together when suspended in aqueous solution. The particles disperse and dissolve in dimethyl sulfoxide (DMSO); when these solutions dry on microscope slides, optical microscopy shows a branched island morphology for the polymer. This morphology is reminiscent of snowflakes and is identified as dendritic. Phase contrast SFM of the dendritic arms show a striking segregation and ordering of various components of the polymer. Paramagnetic sites are conserved in the series of steps leading to dendritic structures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.