Abstract

This study investigates the structural intricacies and properties of single-walled nanotubes (SWNT) and double-walled nanotubes (DWNT) composed of hexagonal boron nitride (BN) and carbon (C). Doping with various atoms including light elements (B, N, O) and heavy metals (Fe, Co, Cu) is taken into account. The optimized configurations of SWNT and DWNT, along with dopant positions, are explored, with a focus on DWNT-BN-C. The stability analysis, employing binding energies, affirms the favorable formation of nanotube structures, with DWNT-C emerging as the most stable compound. Quantum stability assessments reveal significant intramolecular charge transfer in specific configurations. Electronic properties, including charge distribution, electronegativity, and electrical conductivity, are examined, showcasing the impact of doping. Energy gap values highlight the diverse electronic characteristics of the nanotubes. PDOS analysis provides insights into the contribution of atoms to molecular orbitals. UV–Vis absorption spectra unravel the optical transitions, showcasing the influence of nanotube size, dopant type, and location. Hydrogen storage capabilities are explored, with suitable adsorption energies indicating favorable hydrogen adsorption. The desorption temperatures for hydrogen release vary across configurations, with notable enhancements in specific doped DWNT-C variants, suggesting potential applications in high-temperature hydrogen release. Overall, this comprehensive investigation provides valuable insights into the structural, electronic, optical, and hydrogen storage properties of BN and C nanotubes, laying the foundation for tailored applications in electronics and energy storage.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call