Abstract

This work explores the electrical, dielectric and physical characteristics of multi-walled carbon nanotube (MWCNT) and graphene reinforced Poly vinylidene fluoride (PVDF) polymer nanocomposite films, over a wide frequency range, ranging from 1 Hz to 1 MHz. Films are prepared with different weight percentage of MWCNTs or graphene powder within a PVDF host matrix and its intrinsic properties are compared with pure PVDF films. As the weight percentage increases, the material properties such as conductivity (electrical), permittivity (dielectric) and capacitance (dielectric) will change. PVDF is a dielectric and the fillers are conductors, and this gives rise to the phenomenon of percolation, as the weight percentage of conducting fillers increases. This paper explores film’s properties for different weight percentage of MWCNTs and graphene fillers. Tunneling current of graphene–PVDF films are also compared with MWCNT–PVDF films.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call