Abstract
Tuning the surface strain of heterogeneous catalysts are recognized as a powerful strategy for tailoring their catalytic activity. However, a clear understanding of the strain effect in electrocatalysis at single-particle resolution is still lacking. Here, we explore the electrochemical hydrogen evolution reaction (HER) of single Pd octahedra and icosahedra with the same surface bounded {111} crystal facets and similar sizes using scanning electrochemical cell microscopy (SECCM). It is revealed that tensely strained Pd icosahedra display significantly superior HER electrocatalytic activity. The estimated turnover frequency at -0.87 V vs RHE on Pd icosahedra is about two times higher than that on Pd octahedra. Our single-particle electrochemistry study using SECCM at Pd nanocrystals ambiguously highlights the importance of tensile strain on electrocatalytic activity and may offer new strategy for understanding the fundamental relationship between surface strain and reactivity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.