Abstract
The knowledge of the state sequences that explain a given observed sequence for a known hidden Markovian model is the basis of various methods that may be divided into three categories: (i) enumeration of state sequences; (ii) summary of the possible state sequences in state profiles; (iii) computation of a global measure of the state sequence uncertainty. Concerning the first category, the generalized Viterbi algorithm for computing the top L most probable state sequences and the forward-backward algorithm for sampling state sequences are derived for hidden semi-Markov chains and hidden hybrid models combining Markovian and semi-Markovian states. Concerning the second category, a new type of state (and state change) profiles is proposed. The Viterbi forward–backward algorithm for computing these state profiles is derived for hidden semi-Markov chains and hidden hybrid models combining Markovian and semi-Markovian states. Concerning the third category, an algorithm for computing the entropy of the state sequence that explains an observed sequence is proposed. The complementarity and properties of these methods for exploring the state sequence space (including the classical state profiles computed by the forward–backward algorithm) are investigated and illustrated with examples.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.