Abstract
We propose a novel method for distinguishing the spin of ultralight dark matter (ULDM) using interferometric gravitational wave detectors. ULDM can be a bosonic field of spin-0, 1, or 2, and each induces distinctive signatures in signals. We find that the finite-time traveling effect causes a dominant signal for spin-0 and spin-1 ULDM, but not for spin-2. By using overlap reduction functions (ORF) of multiple detectors, we can differentiate between the spins of ULDM. Furthermore, we point out that the current constraint on the coupling constant of spin-1 ULDM to baryons becomes 30 times weaker when the finite-time light-travel effect on the ORF is taken into account. Published by the American Physical Society 2024
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.