Abstract
Image semantic segmentation, a deep learning algorithm, enables the recognition of pixel collections that form distinct categories, allowing for the identification of vehicles, pedestrians, traffic signs, pavement, and other road features. In urban and architectural design domains, image semantic segmentation and related techniques empower practitioners and researchers to efficiently analyze the distribution of public spaces. This application facilitates a better understanding of how people interact with urban environments, ultimately improving the design of functional and inviting spaces. This paper presents an analysis of images of different streets within the Lu Xun Heritage Area in Shaoxing, Zhejiang Province, China, which were obtained through onsite photography. The images were sampled, segmented, and compared to assess the spatial characteristics of distinct street types. A self-trained semantic segmentation model based on the Cityscapes dataset and the PaddlePaddle framework was employed to statistically analyze space variations across various dimensions. This analysis contributes to a better understanding of historical street structure and provides insights into the integration of artificial intelligence in urban planning and design.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.