Abstract

Identifying the impact of climatic factors on mosquito population dynamics is of great importance for dengue outbreak control. The purpose of this study is to develop an approach to predict spatial/temporal mosquito reproduction and disease outbreaks. The prediction of a dengue outbreak is only possible if the temporal relationship between mosquito replication and the weather is known. At present, this is unclear and needs to be examined. Moreover, because the development of mosquito density is a dynamic process in the course of time, it should be observed as closely as possible, in this study in a 1-day timeframe. This paper makes a thorough study of the situation in southern Taiwan and analyzes a large amount of data from 1999 to 2004 related to dengue cases and larval density. We first use the method, k-means, to conduct data clustering and derive representative larvae replication patterns. Then, we propose mathematical models to approximate the development of larval density, describe the expansion of mosquito activity areas, and construct a surveillance system to raise alerts based on real-time input of weather data and larval indices. Analysis of historic data reveals some new information on the spatial and temporal relationships between larval density and dengue outbreaks. In Taiwan, if the weather becomes or remains warm and humid for 6 days after a bout of rain, there can be a sharp increase in the larval mosquito population. About 7 days after the Breteau index begins to rise, larval density reaches its climax; and, about 12 days after the climax of larval density, cases of dengue may be reported. The system is tested using subsequent data from 2005 to 2009 and shows satisfactory accuracy. Numerous data support these findings, and this new knowledge is thus validated and can be used to assist public health professionals to take effective dengue control measures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call