Abstract

Intensity discrimination Weber fractions (WFs) measured for short, high-frequency tones in quiet are larger at mid levels than at lower or higher levels. The source of this "mid-level hump" is a matter of debate. One theory is that the mid-level hump reflects basilar-membrane compression, and that WFs decrease at higher levels due to spread-of-excitation cues. To test this theory, Experiment 1 measured the mid-level hump and growth-of-masking functions to estimate the basilar membrane input/output (I/O) function in the same listeners. Results showed the initial rise in WFs could be accounted for by the change in I/O function slope, but there was additional unexplained variability in WFs. Previously, Plack [(1998). J. Acoust. Soc. Am. 103(5), 2530-2538] showed that long-duration notched noise (NN) presented with the tone reduced the mid-level hump even with a temporal gap in the NN. Plack concluded the results were consistent with central profile analysis. However, simultaneous, forward, and backward NN were not examined separately, which may independently test peripheral and central mechanisms of the NN. Experiment 2 measured WFs at the mid-level hump in the presence of NN and narrowband noise of different durations and temporal positions relative to the tone. Results varied across subjects, but were consistent with more peripheral mechanisms.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call