Abstract

In the filamentous heterocyst-forming cyanobacterium Anabaena PCC 7120, vegetative cells and heterocysts are interdependent on each other and engaged in exchanges of metabolites for survival when grown under diazotrophic conditions. In this organism, the periplasm appears to be continuous along each filament, with a shared outer membrane; however, barriers exist preventing free diffusion of the fluorescent protein GFP (27 kDa) targeted into the periplasmic space. Here we expressed a smaller fluorescent protein iLOV (∼13 kDa) fused to the All3333 (a putative homologue of NrtA) signal sequence corresponding to those recognized by the TAT protein translocation system, which exports iLOV to the periplasm of either heterocysts or vegetative cells. Fluorescence microscopy and immunoblot analysis indicated that the iLOV protein is translocated into the periplasm of the producing cell and properly processed, but does not diffuse to neighboring cells via the periplasm. Thus, periplasmic barriers appear to block diffusion of molecules with a size of 13 kDa, the minimum size tested thus far. Assuming that the physical barrier is the peptidoglycan sacculus, its pores might allow diffusion of molecules within the size range between the PatS pentapeptide and iLOV, thus between 0.53 kDa and 13 kDa.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call