Abstract
Biocatalytic dealkylation of aryl methyl ethers is an attractive reaction for valorization of lignin components, as well as for deprotection of hydroxy functionalities in synthetic chemistry. We explored the demethylation of various aryl methyl ethers by using an oxidative demethylase from Pseudomonas sp. HR199. The Rieske monooxygenase VanA and its partner electron transfer protein VanB were recombinantly coexpressed in Escherichia coli and they constituted at least 25 % of the total protein content. Enzymatic transformations showed that VanB accepts NADH and NADPH as electron donors. The VanA-VanB system demethylates a number of aromatic substrates, the presence of a carboxylic acid moiety is essential, and the catalysis occurs selectively at the meta position to this carboxylic acid in the aromatic ring. The reaction is inhibited by the by-product formaldehyde. Therefore, we tested three different cascade/tandem reactions for cofactor regeneration and formaldehyde elimination; in particular, conversion was improved by addition of formaldehyde dehydrogenase and formate dehydrogenase. Finally, the biocatalyst was applied for the preparation of protocatechuic acid from vanillic acid, giving a 77 % yield of the desired product. The described reaction may find application in the conversion of lignin components into diverse hydroxyaromatic building blocks and generally offers potential for new, mild methods for efficient unmasking of phenols.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.