Abstract

Assuming as a starting point our recent work on a dimer of silicon nanoparticles with light scattering directionality, we have explored the light interaction between the incoming and scattered electric fields in dimers made of other different semiconductors. The scattering directionality is achieved by accomplishing Kerker's conditions. By directing the scattered light towards the gap of the dimer, interferential effects can be used to achieve high or low light intensities as a basis of all-optical nanoswitches. A comparison between dimers of different materials is shown. Full Text: PDF ReferencesR. Gómez-Medina, B. García-Cámara, I. Súarez-Lacalle, F. González, F. Moreno, M. Nieto-Vesperias and J.J. Sáenz, "Electric and magnetic dipolar response of germanium nanospheres: interference effects, scattering anisotropy, and optical forces", J. Nanophoton. 5 053512 (2011). CrossRef B. Rolly, B. Stout and N. Bonod, "Boosting the directivity of optical antennas with magnetic and electric dipolar resonant particles", Opt. Express 20 20376 (2012). CrossRef B. García-Cámara, R. Gómez-Medina, J.J. Sáenz, and B. Sepúlveda, "Sensing with magnetic dipolar resonances in semiconductor nanospheres", Opt. Express 21 23007-23020 (2013). CrossRef B. García-Cámara et al., "All-Optical Nanometric Switch Based on the Directional Scattering of Semiconductor Nanoparticles", J. Phys. Chem. C. 119, 19558?19564 (2015). CrossRef A.I. Barreda, H. Saleh, A. Litman, F. González, J-M. Geffrin, and F. Moreno, "Electromagnetic polarization-controlled perfect switching effect with high-refractive-index dimers and the beam-splitter configuration", Nat. Commun. 8, 13910 (2017). CrossRef R. Vergaz et al., "Control of the Light Interaction in a Semiconductor Nanoparticle Dimer Through Scattering Directionality", IEE Phot. Jour., 8(3), 4501410 (2016) CrossRef B. García-Cámara et al., "Size Dependence of the Directional Scattering Conditions on Semiconductor Nanoparticles", IEEE Photon. Technol. Lett. 27(19), 2059?2062 (2015). CrossRef

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.