Abstract

Stumps are a significant component of coarse woody debris in plantations, but their effect on microsite soil organic carbon (C) and enzyme activities remains understudied. Soil (Alfisol) samples were collected at varying distances from larch (Larix olgensis Henry) stumps and at different soil depths (0–20 cm and 20–40 cm) to analyze soil total organic C (TOC), particulate organic C (POC), easily oxidizable C (EOC), microbial biomass C (MBC), and enzyme activities. Results indicated that stumps significantly affected TOC and POC contents, with the greatest horizontal range of impact reaching up to 15 cm in both the topsoil and subsoil layers. Stumps also significantly affected MBC content, with the greatest horizontal range of impact reaching up to 55 cm in the subsoil layer. EOC content was the most affected, with the stumps’ impact extending to 55 cm in both soil layers. Additionally, the study showed that stumps had a significant impact on the activities of β-glucosidase and β-cellobiohydrolase, with the greatest horizontal range of impact reaching up to 15 cm for glucosidase and 35 cm for cellobiohydrolase in the topsoil layer. Stumps also significantly affected the activities of phenol oxidase and peroxidase, with the maximum horizontal range of stump impact extending up to 35 cm for phenol oxidase and 55 cm for peroxidase in the topsoil layer. This study enhances our understanding of the role of stumps in plantation ecosystems and offers valuable insights for future management strategies to maintain soil fertility and improve site productivity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call