Abstract

Manganese pollution to plants, soils, and streams from Mn-rich mine spoils is a global and persistent issue. Some former mining sites can be revegetated readily while others struggle to support plants. We explored Mn in plants and soils following 75years of soil development and reforestation of a pine-northern hardwood forest at the former Betts Mine in western Massachusetts, USA. We studied soils on four Mn-rich mine spoils and at two control sites: an undisturbed location adjacent to the mine and on a non-Mn mineral bearing rock formation to determine if soil conditions have influenced the uptake of Mn and Ca by vegetation. We collected mid-season foliage from five dominant canopy trees and four common understory plants and excavated three soil pits at each site during July 2018. We found that control sites had lower total Mn (980 ± 140µgg-1) in their soils than on the mine spoil sites (5580 ± 2050µgg-1). Our soil data indicated that < 1% of total Mn was strong acid extractable at mine spoil soils and control sites. Surprisingly, the canopy trees established on mine spoils at the Betts Mine had equal to or lower foliar Mn concentrations (840 ± 149µgg-1) and lower Mn/Ca ratios (0.3 ± 0.1molmol-1) than at control sites (1667 ± 270µgg-1; 1.1 ± 0.2molmol-1), refuting our hypothesis of mine spoils driving highest Mn uptake. Soil pH and physicochemical properties suggest Mn primarily exists within primary minerals or form insoluble oxides at the mine spoil sites. Our results suggest higher Ca availability and pH in soils likely reduced Mn uptake and promoted reforestation of the mine spoils.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call