Abstract

With atmospheric corrections generated from the server, precise point positioning real-time kinematic (PPP–RTK) can achieve high-precision solutions in a fast convergence. PPP–RTK users are concerned about how to use the corrections and the level of performance that can be achieved; thus, our research has focused on correction methods, a priori stochastic modeling, and positioning performance evaluation. Conversely, it is crucial for the server to improve the precision of corrections provided and to consider the balance between cost, computation burden and user performance, especially for commercial applications. We use different scales of the national GPS network of France to generate ionospheric and tropospheric corrections, and corresponding uncertainty information is generated by establishing error functions with respect to an inter-station distance. The quality of corrections and corresponding user performance are analyzed with inter-station distances varying from 22 to 251 km. The results show that the precision of atmospheric corrections can be improved with an increasing number of stations in the network, but the improvement is not significant when the inter-station distances are smaller than 50 km. Regarding user performance, compared to conventional PPP solutions with ambiguity resolution, the convergence time can be reduced by a maximum of 93% and 85% in the horizontal and vertical components, respectively, when the inter-station distance is about 23 km. However, a station spacing within 100 km can still support a 3-min convergence; thus, a balance of server budget and user performance should be considered instead of a dense network.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call