Abstract

The medial olivocochlear reflex has been hypothesized to improve the detection and discrimination of dynamic signals in noisy backgrounds. This hypothesis was tested here by comparing behavioral outcomes with otoacoustic emissions. The effects of a precursor on amplitude-modulation (AM) detection were measured for a 1- and 6-kHz carrier at levels of 40, 60, and 80dB SPL in a two-octave-wide noise masker with a level designed to produce poor, but above-chance, performance. Three types of precursor were used: a two-octave noise band, an inharmonic complex tone, and a pure tone. Precursors had the same overall level as the simultaneous noise masker that immediately followed the precursor. The noise precursor produced a large improvement in AM detection for both carrier frequencies and at all three levels. The complex tone produced a similarly large improvement in AM detection at the highest level but had a smaller effect for the two lower carrier levels. The tonal precursor did not significantly affect AM detection in noise. Comparisons of behavioral thresholds and medial olivocochlear efferent effects on stimulus frequency otoacoustic emissions measured with similar stimuli did not support the hypothesis that efferent-based reduction of cochlear responses contributes to the precursor effects on AM detection.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call