Abstract

Transcription factors are DNA binding proteins that regulate gene expression in response to a large variety of extracellular stimuli, and thereby act as key molecular switches for controlling cell differentiation, proliferation, and apoptosis. During the last decade, a myriad of these proteins have been identified and classified into different structural families, including homeobox, zinc finger, leucine zipper, and helix-loop-helix transcription factors. Members of the homeobox and zinc finger superfamilies are among the best-characterized transcription factors known to act as potent regulators of normal development in organisms ranging from insects to humans. In addition, mutations or aberrant expression in genes encoding these proteins can result in neoplastic transformation in several different cell types, further supporting their role as "guardians" of normal cell growth and differentiation. Therefore, the purpose of this article is to review this field of research with a particular emphasis on the role of homeobox- and zinc finger-containing transcription factors in pancreatic cell growth, cell differentiation, and apoptosis. The potential participation of these proteins in neoplastic transformation is also discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.