Abstract

Gene therapy is one of the frontier fields of medical breakthroughs that poses as an effective solution to previously incurable diseases. The delivery of the corrective genetic material or a therapeutic gene into the cell restores the missing gene function and cures a plethora of diseases, incurable by the conventional medical approaches. This discovery holds the potential to treat many neurodegenerative disorders such as muscular atrophy, multiple sclerosis, Parkinson's disease (PD) and Alzheimer's disease (AD), among others. Gene therapy proves as a humane, cost-effective alternative to the exhaustive often arduous and timely impossible process of finding matched donors and extensive surgery. It also overcomes the shortcoming of conventional methods to cross the blood-brain barrier. However, the use of gene therapy is only possible after procuring the in-depth knowledge of the immuno-pathogenesis and molecular mechanism of the disease. The process of gene therapy can be broadly categorized into three main steps: elucidating the target gene, culling the appropriate vector, and determining the best mode of transfer; each step mandating pervasive research. This review aims to dissertate and summarize the role, various vectors and methods of delivery employed in gene therapy with special emphasis on therapy directed at the central nervous system (CNS) associated with neurodegenerative diseases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.