Abstract

Liver hepatocellular carcinoma (LIHC) encompasses diverse therapeutic approaches, among which targeted therapy has gained significant prominence in recent years. The identification of numerous targets and the increasing clinical application of targeted drugs have greatly improved LIHC treatment. However, the precise role of CDCA4 (Cell Division Cycle Associated 4), as well as its underlying mechanisms and prognostic implications in LIHC, remains unclear. CDCA4 expression levels in LIHC were analyzed using multiple databases including the cancer genome atlas (TCGA), gene expression profiling interactive analysis (GEPIA), and ULCAN, as well as the datasets E_TABM_36, GSE144269, GSE14520, and GSE54236. The prognostic value of CDCA4 was then evaluated. Subsequently, the association between CDCA4 and immune cells was investigated. Enrichment analysis (GSEA) was utilized to investigate the functional roles and pathways linked to CDCA4. Additionally, the methylation patterns and drug sensitivity of CDCA4 were examined. A predictive model incorporating immune genes related to CDCA4 was developed. The TISCH dataset was used to investigate the single-cell expression patterns of CDCA4. Finally, validation of CDCA4 expression levels was conducted through RT-PCR, Western blotting, and immunohistochemistry. CDCA4 exhibited significant overexpression in LIHC and demonstrated significant correlations with clinical features. High expression of CDCA4 is associated with a poorer prognosis. Analysis of immune infiltration and enrichment revealed its association with the immune microenvironment. Furthermore, its expression is correlated with methylation and mutation patterns. CDCA4 is associated with 19 drugs. Prognostic models utilizing CDCA4 demonstrate favorable effectiveness. T cell subtypes were found to be associated with CDCA4 through single-cell analysis. The conclusive experiment provided evidence of significant upregulation of CDCA4 in LIHC. The high expression of CDCA4 in LIHC is associated with prognostic significance and is highly expressed in T cell subtypes, providing a new therapeutic target and potential therapeutic strategy for LIHC.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call