Abstract

Japanese sardines (Sardinops melanostictus) are environmentally sensitive pelagic fish. We investigated the effects of environmental factors on the stock-recruitment (S-R) relationship of S. melanostictus in the Pacific Ocean from 1984 to 2018. We modeled and analyzed the recruitment of S. melanostictus using the Ricker model, the Ricker environment extension model (Ricker-E), and the generalized additive model (GAM). Different numbers of environmental factors were added to the models for fitting, and the Akaike information criterion (AIC) was used to select the optimal model. The results showed that the nonlinear GAM provided the best fit. The results of the GAM single factor and multifactor analysis showed that environmental factors were significantly correlated with recruitment in S. melanostictus (p < 0.05). The best fitting model was the GAM, with an AIC of 57.9 and a cumulative explanation rate of 95.7%. Sea surface temperature was the most dominant environmental factor and had a negative impact on R/S. Considering both spawning stock biomass (S) and the environmental factors in the S-R relationship is important for studying the mechanisms of complementary changes and population changes in S. melanostictus under the influence of the marine environment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.