Abstract

Replacing chair fungicide racemate marketed product by its enantiomer with high activity and low environmental risk for application is a more environmentally friendly methods to control crop diseases. Moreover, carbon-based nanomaterials, with the desirable chemical and mechanical properties, exhibits latent reduce fungicide toxicity capability, while the mechanism is still poorly understood. Therefore, the present study characterized the toxicity of rac-metconazole (Mez; (1RS,5RS;1RS,5SR)-5-(4-chlorobenzyl)-2,2-dimethyl-1-(1H)) and its two cis-enantiomers as well as the repairing effect of reduced graphene oxide (rGo) on Xenopus Laevis larva by examining growth appearance indexes, Mez bioaccumulation, and hypothalamus-pituitary-thyroid (HPT) axis related hormone contents and gene expression after 14 and 28 days exposure. Compared with two cis-Mez, rac-Mez was preferentially bioaccumulated in tadpoles, and rac-Mez treatment showed a higher toxicity effect on tadpole including growth stage and body weight inhibition by dysregulating tadpole thyroid stimulating hormone (TSH) and thyroid hormone (TH) contents and related gene expression. Enantioselectivity was observed in two cis-Mez treatments. Compared with R,S-Mez, S,R-Mez treatment showed more severe damage on tadpole HPT axis related physiological and biochemical processes. rGo could effectively decrease the toxicity of Mez, especially shown the capacity of repairing the hormone dysregulation caused by R,S-Mez treatment. Moreover, the addition of rGo can decrease the bioaccumulation of Mez in tadpoles. Therefore, R,S-Mez is less toxic to Xenopus Laevis larva growth, and its toxicity could be effectively repaired by the addition of rGO.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call