Abstract
To mine the spectral-spatial information of target pixel in hyperspectral image classification (HSIC), convolutional neural network (CNN)-based models widely adopt patch-based input pattern, where a patch represents its central pixel and the neighbor pixels play auxiliary roles in the classification process. However, compared to the central pixel, its neighbor pixels often have different contributions for classification. Although many existing patch-based CNNs could adaptively emphasize the spatial neighbor information, most of them ignore the latent relationship between the center pixel and its neighbor pixels. Moreover, efficient spectral-spatial feature extraction has been a difficult yet vital topic for HSIC. To address the mentioned problems, a central vector oriented self-similarity network (CVSSN) is proposed for HSIC. Specifically, based on two similarity measures, we firstly design an adaptive weight addition based spectral vector self-similarity module (AWA-SVSS) in input space and a Euclidean distance based feature vector self-similarity module (ED-FVSS) in feature space to fully mine the central vector oriented spatial relationships. Besides, a spectral-spatial information fusion module (SSIF) is formulated as a new pattern to fuse the central 1D spectral vector and the corresponding 3D patch for efficient spectral-spatial feature learning of the subsequent modules. Moreover, we implement a channel spatial separation convolution module (CSS-Conv) and a scale information complementary convolution module (SIC-Conv) for efficient spectral-spatial feature learning. Extensive experimental results on four popular HSI data sets demonstrate the effectiveness and efficiency of the proposed method compared with other state-of-the-art methods. The source code is available at <uri xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">https://github.com/lms-07/CVSSN</uri>
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Circuits and Systems for Video Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.