Abstract

Experimental models seeking to explore how susceptible individuals develop rheumatoid arthritis (RA) propose that genetic and environmental factors shape a complex series of molecular and cellular interactions leading to a chronic inflammatory response. T lymphocytes and MHC class II genes have featured prominently in these models. More recent studies have suggested that perpetuation of inflammation in a disease-susceptible host might occur through failure to down-regulate the inflammatory process. One prediction from this model is that effective mechanisms of immunoregulation might be most easily investigated in non-susceptible individuals. However, this has been difficult to study in man. Based on the observation that extended MHC haplotypes are strongly associated with RA in different ethnic groups, I have explored the function of human MHC-encoded genes in transgenic mice using two different experimental approaches. First, by comparing the molecular interactions between disease-associated or non-associated HLA-DR4 molecules and CD4+ T lymphocytes, it has been possible to gain insight into how immune responses in non-susceptible individuals might differ from T-cell responses observed in a susceptible host. This has been achieved using transgenic mice expressing RA disease-associated and non-associated human HLA class II molecules. Secondly, the effects of prolonged exposure of T cells to the proinflammatory cytokine tumour necrosis factor alpha (TNF) have been studied in vitro and in vivo, focusing on T-cell receptor (TCR) signalling and effector responses. In studies of HLA class II transgenic mice, the major differences between disease-associated and non-associated alleles in terms of T-cell responses occur at the level of presentation of antigenic peptides, and the sustained expression of inflammatory cytokines such as TNF. Chronic exposure of T cells to inflammatory cytokines such as TNF induces a phenotype which resembles RA synovial T cells, including the induction of non-deletional and reversible hyporesponsiveness to TCR ligation and uncoupling of proximal TCR signal transduction pathways. The experimental findings are consistent with a model in which HLA class II-driven inflammatory cytokine expression uncouples TCR signalling pathways in the susceptible host in such a way as to profoundly suppress proliferative and immunoregulatory cytokine responses, while at the same time promoting cell survival and effector responses.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.