Abstract

Remote ischemic preconditioning (RIPC) is a phenomenon whereby transient nonlethal ischemia and reperfusion episodes confer protection against prolonged ischemia reperfusion-induced injury. However, the underlying intracellular signaling has not been extensively explored. This study aimed to inspect the putative involvement of TRPV1 -dependent CGRP release in mediating remote hind limb preconditioning-induced cardioprotection. In this study, remote hind limb preconditioning stimulus was delivered (four consecutive episodes of 5minutes of ischemia reperfusion) using a blood pressure cuff tied at the inguinal level of the rat. The isolated rat hearts were perfused on the Langendorff's system and were subjected to 30-minutes global ischemia and 120-minutes reperfusion. Prolonged ischemia and subsequent reperfusion led to myocardial injury that was evaluated in terms of infarct size, LDH release, CK release, LVDP, +dp/dtmax , -dp/dtmin , and coronary flow rate. The pharmacological agents used in this study included capsaicin as TRPV1 channel activator, sumatriptan and CGRP8-37 as CGRP blockers. Remote hind limb and capsaicin preconditioning (10mg/kg-1 ) significantly reduced the infarct size, LDH release, CK release and significantly improved LVDP, +dp/dtmax , -dp/dtmin , and coronary flow rate. However, remote hind limb and capsaicin preconditioning-induced cardioprotective effects were remarkably reduced in the presence of sumatriptan (8mg/kg-1 ) and CGRP8-37 (1mg/kg-1 ). This indicates that remote hind limb preconditioning stimulus probably activates TRPV1 channels which subsequently induces CGRP release to produce cardioprotective effects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.