Abstract
Introduction Numerous studies have delved into the clinical efficacy of different topical treatments for actinic keratosis (AK). However, our understanding remains limited regarding their capacity to prevent DNA and protein damage caused by ultraviolet radiation (UVR). Objectives The aim of this study was to analyze and compare the preventive capabilities of various AK-targeted products in countering DNA and protein alterations in human biopsies following exposure to experimental UVR. Methods Twelve healthy Caucasian volunteers (six men and six women) aged 18 years and above, with Fitzpatrick skin types II-III, participated in an experimental irradiation study. Six topical products, containing various ingredients (DNA repair enzymes, antioxidants, keratolytic agents, cyclooxygenase inhibitors, and/or sunscreens) were tested. The experimental sites were exposed to UVR at six times the minimal erythema dose for eight consecutive days. Each test product was applied 30 to 45 minutes before irradiation at a standard thickness of 2 mg/cm2. A control site was treated with the vehicle alone, serving as a negative control. The study focused on cyclobutane pyrimidine dimers (CPDs) and protein carbonylation (PC) as molecular markers of UVR-induced DNA and protein damage, respectively. Results The efficacy of different AK-targeted topical products showed substantial variation when applied to normal skin before experimental exposure to UVR. While sunscreens, predictably, played a crucial role, additional ingredients (i.e., DNA repair enzymes and antioxidants) also acted as vital protective agents for both the cellular genome and proteome, shielding them against UVR-induced damage. Conclusion In topical products specifically designed for AK, the strategic integration of DNA repair enzymes and antioxidants, in addition to sunscreens, establishes a critical defense mechanism against the detrimental effects of UVR on cellular DNA and proteins.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.