Abstract

The Resin Infusion or the VARTM (Vacuum Assisted Resin Transfer Molding) process has significant potential to be used to manufacture curved composites. Another way to produce curved or complex geometry is to use 3D printers. 3D or FDM (Fused Deposition Modelling) printers are now being used to produce relatively cheaper curved parts using thermoplastics such as PLA. However, the strength and mechanical performance of these parts is limited and can be enhanced if the polymer is reinforced with a type of fiber for instance. Research is being carried out to produce fiber rein-forced thermoplastic composites but that process is expected to be more expensive than the alternative methods such as injection or compression molding. Furthermore, to understand the manufacture of a hybrid composite using thermoplastics, fibers and epoxy resin, research and investigation need to be carried out. In this research, there are single-sided, double-sided, reusable, disposable and consumable molds. Most of the molds were created either using an FDM printer or manually. These molds were then used to manufacture flat and curved composite structures via the resin injection process, i.e. VARTM with epoxy resin system and glass/carbon/flax fiber reinforcement. By replacing the costly metallic molds by significantly cheaper molds, the cost of production was expected to further reduce. Furthermore, using double-sided PLA molds was not expected to be a threat to the overall cost of the composite part in question compared to double-sided matched molds used in compression molding. Shear strength, tensile strength and charpy impact strength of most of the manufactured composite parts were also investigated. The strengths were compared based on the method of mold usage. The results showed that this method is effective for a cheaper production of curved epoxy resin composites. However, the strength of the part will decrease as the curved profile gets more complicated unless the basic resin infusion process is altered.

Highlights

  • Using double-sided PLA molds was not expected to be a threat to the overall cost of the composite part in question compared to double-sided matched molds used in compression molding

  • This paper describes a method to manufacture curved composites using resin infusion (VARTM) and cheap PLA molds created by 3D printing (FDM)

  • Shear strengths and thickness of each part were measured and the results were used to draw a few comparisons between the fiber types, mold types and the curvature profiles

Read more

Summary

Introduction

Vacuum Assisted Resin Transfer Molding VARTM) process has been developed over the last twenty years to manufacture large-scale composite parts for commercial and military applications. This technique is being increasingly used to produce parts and tools in the marine, wind energy, automotive and aerospace sectors [1] [2], being suitable for medium to large components, and low production runs [3]. When compared to the wet hand lay-up process and Resin Transfer Molding, it minimizes styrene and various gaseous emissions while maintaining simple single-sided mould setup. Significant amount of research is being carried out to manufacture complex shaped composites using resin infusion and test the composite parts

Objectives
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.